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We consider spaces of splines in k variables of smoothness r and degree d defined
on a polytope in IRk which has been divided into simplices. Bernstein-Bezier
methods are used to develop a framework for analyzing dimension and basis
questions. Dimension formulae and local bases are found for the case r = 0 and
general k. The main result of the paper shows the existence of local bases for spaces
of trivariate splines (where k = 3) whenever d> 8r.£' 1992 Academic Press. Inc.

1. INTRODUCTION

We begin by defining a triangulation in IRk. Suppose that k ~ 1 and that
"f/ c IRk is a set of N distinct points. The following definitions are standard
(see [3, 13J):

DEFINITION 1. A K-simplex (J (0:;:;; K:;:;; k) is the convex hull of K + 1
points called the vertices of (J. (J is non-degenerate if its K-dimensional
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volume is non-zero and degenerate otherwise. The dimension of a non
degenerate I<:-simplex is 1<:. The set of vertices of (J is denoted by <(J). The
convex hull of a subset of <(J) containing fl + I :;::; I<: elements is a fl-face
of (J. A (I<: - 1)-face of (J is also called a facet of (J. The convex hull of a
finite set P of points is denoted by conv(P).

DEFINITION 2. A triangulation :Y of the set "r is a set of non-degenerate
k-simplices satisfying the following requirements:

1. All vertices of each simplex in :Y are elements of 1"".

2. The interiors of the simplices in :Y are pairwise disjoint.

3. The simplices cover the convex hull of 1/, i.e., as point sets we
have

Q:= conv(1"") = U T.
TE:T

(1 )

4. Each facet of a simplex in :Y either is on the boundary of Q or else
is a common face of exactly two simplices in :Y.

5. Each simplex in :Y contains no points in "f/" other than its vertices.

Note that a fl-face of a simplex is itself a fl-dimensional simplex. We
denote by ~ the set of all fl-faces of the simplices in :Y (fl = 0, 1, ..., k - I).
We denote the set of all simplices (of various dimensions) by

k-l

!I' = U fI'" u:Y.
I'~O

(2)

In the bivariate (k = 2) case !I' consists of vertices, edges, and triangles. In
the trivariate (k = 3) case, !I' consists of vertices, edges, triangles and
tetrahedra.

DEFINITION 3. The star of a simplex (J E!I' is the point set

star«(J) = U r.
tEY,aCt

(3)

Note that throughout this paper the symbol c does not exclude
equality. Thus the star of a simplex (J E:Y is (J itself.

We employ the usual definition of binomial coefficients:

if m~n

(4)
otherwise.
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DEFINITION 4. Given a triangulation !! and integers 0 ~ r ~ d, we
define the corresponding spline space

5'"(!!)= {SEC'"(Q) 'sl ElP k
. d . r d' \frE!!}, (5)

where IP~ is the (k; d)-dimensional linear space of all k-variate polynomials
of total degree not exceeding d.

These spaces of splines are of considerable interest in numerical analysis
and approximation theory, and have been studied heavily in the past 15 years
(see [2,4-6,9-12, 14-17, 19.20,22] and references therein for the bivariate
case and [1,3,7,21] and references therein for the multivariate case).

Clearly S~(!!) is a finite-dimensional linear space. One would like to
calculate its dimension, and to construct a basis for it (preferably consisting
of elements with small supports). But these problems are very difficult (and
are not completely solved) even for the bivariate case, and so we cannot
expect to be be able to resolve them completely (at this point in time) for
the multivariate case.

Our aim in this paper is more modest. First, in Sections 2 and 3 we use
Bernstein-Bezier methods to develop a framework in which the dimension
and local basis problems can be analyzed. In Section 4 we give dimension
formulae and explicit local bases for the special case of r = O. Smoothness
conditions are discussed in Section 5. The rest of the paper deals with
trivariate splines where the triangulation becomes a tetrahedral partition.
In Section 6 we give dimension formulae and explicit local bases for certain
very special partitions. These results are used in Section 7 to establish the
main result of the paper: the existence of local bases for trivariate spline
spaces on arbitrary tetrahedral partitions whenever d> 8r.

2. THE GENERALIZED BERNSTEIN-BtZIER FORM

Our analysis of S~(!!) is based on the well-known (cf. [2,8]) Bernstein
Bezier form of a multivariate polynomial. In this section we introduce the
required notation. Let N be the set of non-negative integers. We shaH use
the set of vertices 1i of the triangulation as an index set. For vectors
i= [i"]vE ;~ENN and a= [aV]VE1~EIRN, let

Iii = L: iv,
VE '1~

(6)

(7)
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0° := 1. (8)

We also use the notation

O"(i)=conv{V: iv>O}, O"(a) = conv{ V: a v # O}. (9)

For each V E "I', we define a generalized barycentric coordinate function
as the cardinal piecewise linear function bvE S~(.'1) with the property

if V= W

otherwise,
VWE 1'. (10)

Clearly, in each simplex T E!1 the functions b v , where V is a vertex of T,

reduce to the ordinary barycentric coordinates. Globally, i.e., for all x E Q,

they satisfy

VVE"I', and x= L bv(x) V. (11)
Ve"Jl"

Associated with these coordinate functions, we define the vector-valued
function

(12)

It is known (cf. [2,8]) that every function s E S~(!1) can be written
uniquely as

s(x) = L cjbi(x),
iE ld

(13 )

where bi is defined from b as in (7), and where Id is the so-called domain
index set

Id = {i E t\jN: Iii = d and O"(i) E Y'}. (14)

The coefficients Ci are the Bhier ordinates of s. It will be useful to define
a linear functional to pick off these coefficients. We define Ai: S~(!1) ~ ~

to be the functional defined by

where Ci is the corresponding coefficient in the expansion (13).
For later use, we also introduce the set of domain points

" i v
P j = L.. -1.1 V,

VE't" I

(15)

(16)
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The pairs (Pi' cd, i E Id, are called the Bezier control points of s, and the set
of all control points is called the control net of s.

We note that a domain point Pi lies at a vertex precisely when exactly
one component of i is non-zero. More generally, Pi lies on a simplex IJ of
dimension q precisely when exactly q + 1 components of i are non-zero
(corresponding to the vertices of IJ). For later use it will be convenient to
define the distance of a point Pi from a simplex IJ as

d(P j , IJ) = L liwl,
WE <0->'

where

is the set of all points in j/ which are not vertices of rJ.

The following lemma will be useful later:

LEMMA 5.

(d-l)IIdl = L d' .
O-E[I' 1m IJ

(17 )

(18)

(19)

Proof It suffices to show that each simplex (J contains exactly (:i;;;~)

domain points that are not contained in any lower dimensional simplex.
We now use induction on the dimension of the simplices. There is 1 = (dO ')
domain point at each vetex. If K = dim (j> 0, the domain points not con
tained in a lower dimensional simples are precisely the domain points in
the interior of IJ. These can be obtained by stripping the K + 1 facets of (J,

leaving a K-dimensional simplicial array of (d+K-,}K+l))=(d~l) domain
points. I

3. DETERMINING SETS

In the bivariate case (cf. [4-6,12, 17J) the concept of a determining set
proved to be very useful. We now introduce a multivariate analog.

DEFINITION 6. A set f0 c Id is a determining set of S~(g-) if, for all
s E S~(:r),

c;=O, Vi E t!i' s=O. (20)

f0 is a minimal determining set if there is no determining set with fewer
elements than !!iJ.
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The following lemma is an analog of Lemma 1 of [4], and can easily be
established by elementary linear algebra.

LEMMA 7. If ~ is a determining set for S~(.r), then I~I is an upper
bound on the dimension of S~(.r). Moreover, if g is a minimal determining
set, then I~I equals the dimension of S~(Y).

As shown in [4] for the bivariate case, minimal determining sets ~ can
also be useful for constructing a basis (and dual basis) for the spline space.
The same idea can be used here in the multivariate setting.

LEMMA 8. Let!!} be a determining set for S~(.r). Suppose that for each
i E £C there exists a spline Ii in S~(.r) such that

'v'j E£C. (21 )

Then £C is a minimal determining set, the dimension of S~(Y) is equal to
I£CI, and the functions {ldiE~form a basis for S~(.r).

Proof By construction, the Ii are linearly independent, and it follows
that the dimension of S~(.r) is at least I£CI. By Lemma 7 we know that I£CI
is an upper bound for the dimension of S~(.r), and the result follows. I

For numerical applications, it is important that the supports of basis
elements be small. Any spline in S~(ff) which does not vanish at a vertex
V must have support containing at least the star of that vertex. Thus, any
basis for S~(ff) must contain elements with supports on such sets. This
observation motivates the following definition:

DEFINITION 9. A basis for the spline space S~(.r) is said to be mini
mally supported provided that each basis element has support contained in
stare V) for some vertex V.

We shall see below that with sufficient care in the choice of a minimal
determining set for S~(Y), it is sometimes possible to arrange that the
cardinal splines Ii form a minimally supported basis for S~(.r).

4. THE SPACE S~(.r)

In this section we give a formula for the exact dimension of S~(.r), and
explicitly construct a minimally supported basis.

THEOREM 10. For all d?; 1,

(d-1)dim S~(Y)= L d.
(JEY' 1m (J

(22)
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Moreover, the cardinal splines
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(23)

(24)

provide a basis of minimally supported splines.

Proof It is clear that the splines defined in (23) belong to S~(g-) and
satisfy (21). Since clearly 9 = I d is a determining set for S~(g-), the result
follows immediately from Lemma 8 and Lemma 5. I

EXAMPLE 11. In the bivariate case (k = 2), the simplices in g are ver
tices, edges, and triangles. There is one domain point at each vertex, d - 1
domain points in the interior of each edge, and (d 21) domain points in the
interior of each triangle. Letting B be the number of boundary vertices, J
the number of interior vertices, E the number of edges, and F the number
of triangles, we get

(
d-I)dimS~=N+(d-I)E+ 2 F.

Now using the Euler relations F = B + 21 - 2 and E = 2B + 31 - 3, we get

where

dim S~= ciB+ fJI + y, (25)

d 2 +d
0(=--

2 '
and }' = _d2 + 1. (26)

This is a special case of a formula given in [2, 17].

EXAMPLE 12. In the trivariate case (k = 3), the number of tetrahedra is
not determined uniquely by the point set "I"'. Assume the triangulation can
be built by adding one tetrahedron at a time, joining it on precisely 1, 2,
or 3 facets to the growing triangulation (see [3] for a discussion of this
assumption). Let all,!J. = 1, 2,3, denote the number of times that a
tetrahedron was joined at precisely j1. faces. Letting N be the number of
vertices, E the number of edges, F the number of triangular facets, and T
the number of tetrahedra, it turns out that

{27 )

and
3

dimS~(Q)=po+ L .D ll all ,
Il~1

(28 )
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= (d+ 3 -11)
PI" 3 ' 11 = 0, 1, 2, 3. (29)

This is also a special case of a formula in [2].

5. SMOOTHNESS CONDITIONS

To analyze S~ur) where r > 0, we need to take account of smoothness
conditions between the polynomial pieces. We begin with a function
s E S~(3), and give conditions for it to belong to S~(3) for r > O. Let
, E 9'f. _1 be an interior facet shared by the two simplices, I> r 2 E 3. Let the
vertices V and V be defined by

'1 =conv(Vu <r») and (30)

Furthermore, let a = [a W] WE l' E IR N be the vector of generalized bary
centric coordinates of V with respect to '2' i.e.,

V= L awW,
WE «2>

aW=O

Let ev=[e~v]wE.,rENN be defined by ew =t5 vw. Then it is well-known
(see [8]) that SES~(3) is r times differentiable everywhere on r iff

Ci = L ci-pev+i ai

iii ~p
Pi~pev+j E 1"2

(32)

for all P = 1, 2, ..., rand i E Id such that i v = P and PiE, 1 .

Equation (32) describes a smoothness condition of order p. We say that
the condition is associated with the index i or with the domain point Pi'
These smoothness conditions involve Bezier coefficients in two adjoining
k-simplices. These conditions can chain together, resulting in connections
between coefficients in several different k-simplices. To analyze these condi
tions, we want to localize these interconnections. This can be accomplished
by appropriately dividing up the index set (or domain set) as was done in
the bivariate case (cf. [4-6, 10-12]). In the remainder of this section we
assume that d> r2k

.

For each simplex rJ E g; of dimension less than k, let

36'(rJ) = {iEld : I iv";?;d_r2k-dima-1}\ U .~(r). (33)
Ve (u) 1" face oro-
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This is a recursive definition; one takes first simplices of dimension 0, then
those of dimension 1, etc. Since

L iv + L iv=d,
VE (cr) VE (cr)'

it is clear that we can also write

(34)

~(a)={iE[d:d(Pi,a):(r2k-dim(G)-1}'\ U 26(r). (35)
\ r face of a

If a is a k-dimensional simplex in :!I, we define

. \
~(a)={IE[d:PiEa} \ U 91(r).

\ r face of a

Let

(36)

Then the set &8*(a) consists of domain points which are at a distance at
most r2k

- dim(cr) - 1 from a, and which do not lie in any of the sets &8* (T)
for any subsimplex r of a. If a is a k-simplex, then &8*( a) consists of
domain points in a which are at a distance of r or more from any face of rJ.

EXAMPLE 13. Consider the special case k = 3, r = 1, d = 9, ]If = 4, Thus
there is a single tetrahedron and a single nonic polynomial with 220 coef
ficients. These are divided up as follows: For each of the four vertices there
are 35 domain points within a distance of 4 of the vertex. For each of the
six edges, there are 8 domain points with a distance of at most 2 from
the edge (but not in the vertex sets). For each triangular face a of the
tetrahedron, there are 7 domain points in £!6l*(a) at a distance of at most
1 from the face. Finally, there are 4 domain points inside the tetrahedron
which are not in any of the previous sets.

We claim that the sets defined in (33) form a partition of [d' Clearly, the
union of the sets ~*(a) includes all of the domain points; i.e.,

(38)

It remains to show that the sets in (33) are disjoint.

LEMMA 14. For all a, r E [1',

a=l=r => (39)
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Proof Suppose there is a domain index i E gB(a) (\ Pl( 't"), for two
simplices a, 't" E Y' such that dim a;': dim r, and r if- a. Thus

implying

I i v ;': d- r2k- dim ,,-I,
VE (,,)

I iv;,:d-r2k-dimT-t,
VE (T)

(40)

Also,

I i v + I iv;,:2d_r2k-dim,,-I_r2k-dimT-I. (41)
VE(") VE(T)

I i v + I i v = I iv + I i v·
VE(") VE(T> VE("nT) VE(")U(T)

(42)

Combining, and using LVE(")U(T) iv<d, we obtain

(43)

Thus there exists a face f of r such that i E gB( i), which is a contra
diction. I

The following lemma shows how the domain points involved in a
smoothness condition lying in one simplex interact with domain points
lying in lower order simplices.

LEMMA 15. Let d> r2k and let a E Y' be a given simplex. Suppose
i E gB(a). Then for each domain index i - pe v +j on the right hand side of
the smoothness condition (32) there exists a simplex w c a such that
i-pev+jE~(W).

Proof Fix iEgo(a) and let 't", p, and Vbe as in (32). We have to show
that for all j as in (32), i-pev+jE~(W) for some wca. Since iEgB(a),
we have d(P;, a)<r2k- dim

"-I. Now the index i-pev+j is obtained from
i by reducing the coordinate corresponding to V by p, and by increasing
other components by at most UI <p. By the definition of distance and the
fact that V ¢ a, we conclude that

(44)

and the result follows. I
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EXAMPLE 16. Let k = 3. Then the smoothness conditions associated
with domain points lying in the disk 88*( V) around a vertex involve only
points in that disk. The smoothness conditions associated with domain
points lying in the set 3B*(E) for an edge E involve points in E and in the
two disks gg*(V I ) and gg*(Vz) around the vertices VI and Vz which form
the ends of E. The smoothness conditions associated with domain points
lying in the set 18*(F) for a (triangular) face F involve domain points lying
in the three sets £14*(EI ), £14*(Ez) and £14*(E3 ), where E I , Ez, E 3 are the
edges of the face, and in the three sets 88*( Vd, 18*( VzJ, £14*( V3 ), where
VI' Vz, V3 are the three vertices of F. Finally, for a tetrahedron T, the
set £14*(T) consists only of points in T which are not involved in any
smoothness conditions (being a distance of more than r from every face).

6. TRIVARIATE SPLINES ON A SPECIAL CLASS OF PARTITIONS

In the following section we present the main result of the paper
concerning the existence of local bases for trivariate spline spaces defined
over a tetrahedral partition. In preparation for proving this result, in
this section we discuss trivariate splines on special kinds of tetrahedral
partitions, called "oranges" in [21].

DEFINITION 17. Let Q be the union of a set (!! of tetrahedra
T[I], ..., T[n] which share a common interior edge. We call such a partition
an orange.

Given an orange (!) of Q, we may assume that the common edge is
the z axis. Let vT and VB be the top and bottom vertices of Q. Then the
remaining vertices can be ordered counterclockwise according to their
projections (x" yJ into the (x, y) plane. We number them as VI' ..., Vn , and
suppose that none of them lie on the y axis. Suppose that the tetrahedra
are numbered so that T[i] has vertices vn VB' Vi' V'+I (where vn + L :=v;).
The face separating the tetrahedra T[i-I] and T[i] is a vertical plane with
the equation Y+O'iX=O, where O'i= -ydx,.

LEMMA 18. Every SEY'~((!)) can be written in the farm

n d-r j-I j-k-I

s(x,y,z)=p(x,y,z)+L L L L a}fNJ()(x,y,z), (45)
i~1 j~l k~O I~O

where

{

7 kXI(y + O'.x)r+ j-k-I
"I.'i] ( ) - , ,
'f/AI x, y, Z = 0,

640.702-9

(x, y, Z)E T[i<J, /1~i (46)
otherwise,
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and where P is a polynomial of total degree d in (x, y, z). Moreover, the coef
ficients aX? must satisfy a homogeneous linear system of equations of the
form Aa=O, where a= (ad-n .." adT, with aj = (ad-r,d-r-j, ..., aj,o)T,

_ ( [1] [1] en] en] )T
aj+k,k- aj+k,k,O' ..., aj+k,k,j-l' ..., aj+k,k,O' ..., aj +k,k,j-l ,

and where

[

Ad-r. ]
A= '.,

A,

.=[Ad_r,d-r_
j

'. ]
AJ "

Aj,o

o

(47)

(48)

(49)

(
r+ j) .

1 a,

(
r + j) ~

2 a, (
r+ j -l) .

1 a,

1

(
r + 1) .

1 a,

(r+~)O'~+j (r+~-I)O'r+j-'
r+;' r+;-I' (

r+ 1) r+l
1

a,
r+

(50)

Proof The statement that s can be represented as stated is a direct
analog of the two-variable result in [15] (see also [17,18]). By a standard
algebraic argument, the difference between the polynomial pieces Pi and
Pi +, which share the face with equation y + a iX = 0 must be a linear
combination of polynomials each of which contains the factor (y + O'ix)'+ '.
The space of all such polynomials (of total degree d) is spanned by the
polynomials r/JJ~? with 1 ~j~ d - r, 0 ~ k ~j -1, and 0~ I ~j-k-l.

To show that the coefficients must satisfy the system Aa = 0, we observe
that after crossing the nth face, the expression for s must agree with the
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original polynomial; i.e., the coefficients of the various powers of x, y, z

of the difference s - p must all be zero. The conditions corresponding
to the monomials zkyr+ j , zkxyr+j-I, ...,zkxr+j lead to the equations
Ai+k,kaj+k,k=O. Assembling these equations for 1~}~d-r and O~k~
d - r - } leads to the system Aa = O. I

THEOREM 19. For all 0 ~ r < d, the dimension of Sf'~(l9) is given by

(d;3)+n(d-;+2)

_ (d+ 3) (d-;+ 1) +2 (d-;+ 2) + IT,

where
d-r

(J = L (d - r - ) + 1)(r + } T 1- }e) +,
j= I

(51 )

(52)

and e is the number of distinct numbers in the sequence I(J 11, "', i(J n I·

We remark that dimSf'~(@)=L:~~oS~(C)where C is the two dimen
sional vertex star (i.e., the union of all triangles sharing the interior vertex)
obtained by projecting @along the interior edge, d., [21].

Proof The dimension of the space of polynomials in (x, y, z) is (dj3).
The number of linear independent nonpolynomial elements in Sf'~(0) is
equal to the number of linearly independent solutions of the homogeneous
system Aa = O. This system consists of E equations in U unknowns, where

d-r d-r
E= L (d-r-)+ 1)(/"+}+ 1)= L }(d-}+2)

J~ 1 j= I

and

(
d-r+ 1) (d-r+2)

=(d+3) 2 -2 3 I

n d-r j-I j-k-I

U= L L L L
i=1 j=1 k=O 1=0

(53)

(54)
d-r (d-r+2\

=n j~1 (d-r-)+ 1)}=n 3 )-

Now the number of linearly independent solutions of Aa = 0 is given by
U - R, where in view of the band structure of A,

d-r d-r d-r-j
R= rank(A)= L rank(Aj )= L L rank(Aj+k,k). (55)

j~1 J~I k~O
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(56)

Thus, to calculate R, we need only consider the matrices AJ~\,k' which are
of size r + j + 1 by j. It was shown in [15,18] that

rank(Aj+k,k) = (r + j + 1) - (r + j + 1- je)+,

The result follows, I

Following [18], we now show how to explicitly choose a minimal deter
mining set of indices for the spline space Y'~((t)) in Theorem 19. First, we
need the analog of Lemma 3.1 of [18]. Suppose that the ordinates for
tetrahedron T[i] are given by

[i]
Cjk1m ' j+k+l+m=d, (57)

with the vertices of T[i] are VT, VB' Vi' and Vi+I in order.

LEMMA 20. Suppose that SEY'~((n) is such that s=o on the tetrahedron
T[i-I]. Let

Ih [i] _ ( [i] [i])T (58)
It ere ap - ad~r,d-r-p, ...,ap,o

with
[i] _ [i] [i] T

ap+q.q- (ap+q,q,O' ..., ap+q,q,p_I) .

In addition, let

(59)

C[i] = (C[i] C[i])T
d , ..., r+ 1 , (60)

with
[i] _ [i] [i] T

Cp,q - (Cd-p-q,q,O,p' ..., Cd-p-q,q,p-r-I,r+l) . (61)

Then there exists an upper triangular matrix U [i] with nonzero diagonal
entries such that

(62)

Proof Without loss of generality, we may assume that the vertices of
the tetrahedron T[i] are at VT= (0, 0, v~), VB= (0, 0, 0), Vi= (v:, 0, v:), and
Vi+l=(V:+l,V~+I,V:+I)'and that the common face between tetrahedron
T[i-I] and T[i] is the (x, z) plane. Direct calculations show that the
barycentric coordinates of a point (x, y, z) in T[i] with respect to the four
vertices of T [i] are given by

(63)
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(t,1 1!_V2 X)V 3 _V 1V3 1'+V I V2 Z;+1..... i+l"" i i ;+IJ i ;+1
IX= 3 I ,

VTViV'+ 1

{3=1-IX-y-b
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(64)

It is well known (cf. [8]) that there is a lower triangular matrix L with
nonzero diagonal entries such that L¢; = if;, where

and

(65)

and where

A. = (zqyp+r ZqXp-11'T+l)T
'Pp+q,q , ... , .T , (66)

and

(67)

Using this connection, we see that (C[i])T if; = (C[i])T L¢; = (a[i])T ¢;. This
implies that a [i] = LTc [i], and hence U [I] = L T is the desired matrix. I

We say that the coefficient cJ~/~ is on a qth ring around the line from vfJ

to vT provided that 1+ m = q. We now describe how to choose Bezier
coordinates to determine all of the ordinates on such a ring.

THEOREM 21. Suppose that sE9'~+i(9) on a partition (9 as in Defini
tion 17, with 1 ,,;;, j. In addition suppose that all of the Bhier ordinates of s in
all rings up to order r + j - 1 and all of the ordinates of s in the tetrahedron
T[I] are zero. Let rj be the indices of the first

N = nj - (r + j + 1) + (r + j + 1- je) + (69)

ordinates in the ordered set

{ [Ill] c [ilL] c [Il.] c [1l.J }
CO,O,r+l,j-l"'" O,O,O,r+j"'" O,O,r+l.j-I'''·' O,O,O,r+j' (70)

where the c's are as in Lemma 20, and where Iln _ e + 1 < .,. < ,Un = n are such
that the associated faces are pairwise distinct, and where III < .,. < Il" _e is
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a complementary set so that {,ul' ..., ,un} = {I, ..., n}. Then AjS = 0 for i E Fj
implies s == O.

Proof First we note that

(n - e) j ~ nj - (r + j + 1) + (r + j + 1- je) + ~ (n - 1) j. (71 )

This assures that in defining Fj , all of the indices of ordinates with
superscripts ,u 1> .•• , ,un _ e are selected, while no index of an ordinate with
superscript ,un = n is selected.

We apply Lemma 20 to force all but (r + j + 1) - (r + j + 1 - je) + of the
coefficients in the expansion

n j-l
( )( ,)_" " [I] '" [I] ( )S - P X,}, Z - ~ ~ ajOI'l'jOI x, y, Z

i~l 1=0

(72)

to be zero (cf. the arguments in [18]). These remaining coefficients are
associated with at most e edges with different slopes, and satisfy a
homogeneous system of full rank, and thus must be zero. I

From the above results, it is clear that to construct a minimal deter
mining set for g'~((I), we can begin with the set of all indices of the points
in the first tetrahedron T[l]. The smoothness conditions then ensure that
all ordinates are determined in the first r rings. Now we apply the above
theorem to determine the ordinates for all rings of order r+ 1, then for
rings of order r + 2, etc. Each of the d - r - j + 1 rings of order r + j can be
handled separately. Indeed, the equations corresponding to any ring of
order r+ j are all the same, and in fact are all equivalent to the equations
obtained in considering g';+ j ( (I).

THEOREM 22. Suppose that SEg'~(m) on an orange (I). Let Fo be the set
of all indices corresponding to domain points in the tetrahedron T[1]. For
each 1~ j ~ d - rand 0 ~ k ~ d - r - j, let F j.k be the set of indices which
determine the kth ring of order r + j. Then the set

d-r d-r-j

F=Fou U U Fj,k
j~l k~O

(73)

is a minimal determining set for Y'~(m).

Proof Clearly F is a determining set. To show it is minimal, we need
only check that its cardinality is equal to the dimension of Y'~(m). But

(
d+2) d-r d-r-j

#(0= 3 +j~l k~O (nj-(r+j+1)+(r+j+l-je)+)

which is precisely the number in Theorem 19. I

(74)
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We now discuss the problem of constructing a minimal determining set
for S~(g-) in the special case of three variables (k=3) and where d>8r.
The idea is to first find minimal determining subsets for each of the sets
~((J), where (J is a vertex. Then we work on the ~((J) where (J runs through
the edges, then through the triangles, and finally through the tetrahedra.

DEFINITION 23. Fix the spline space S~(g-). Let (J E g. We call a set
!Zi((J) c: ~((J) a determining set for ~((J) provided that for all s E S~(g-),

Ci = 0 Vi E !Zi((J) U U ~('r)
r face of u

=> Ci = 0 Vi E 36'((J). (75\
. I

The set 221 ((J) is a minimal determining set of ~((J) if there is no smaller set
which works.

The following theorem is the main result of the paper.

THEOREM 24. Let k = 3, r > 0, and d> 8r. For each simplex (J E g ret
!Zi((J) be a minimal determining set for 36'( (J). Then

221:= U ~((J)
aE[F

is a minimal determining set for S~(Q), and

aE5/"

(76)

(77)

Moreover, for each (J E:7 and each i E~((J), there is an associated cardinal
spline Ii with support on star(u). The collection

(78)

forms a minimally supported basis for S~(g-), and the set of linear
functionals

A * = {Ai : i E !Zi }

defined as in (15) form a dual basis in the sense thac (21) is satisfied.

Proof Using induction on dim u for simplices u E:7, we first establish
that ~ is a determining set. Let (J E:7. If dim (J = 0, then (J is a vertex, and
by Lemma 15 the smoothness conditions (32) only involve domain indices
in 36'(u) and by assumption all domain indices in ~((J)\~(G) are deter
mined. If dim (J > 0 then the smoothness conditions only involve domain



260 ALFELD, SCHUMAKER, AND SIRVENT

indices in !J( (J) and !J( r) for lower dimensional simplices r. The domain
indices in all sets !Zl(r) are determined by the induction hypothesis. The
remaining domain indices in !J((J) are determined by virtue of £Zi((J) being
a determining set. We have established that !!fl is a determining set, and
hence by Lemma 7 that the dimension of S~(Y) is bounded above by l!!fll.

The theorem now follows from Lemma 8 if we can show that for each
(J E Y and each i E !!fl((J), there is an associated cardinal spline with support
on star( (J) satisfying (21).

Case 1. «(J is a vertex). For given iE!!fl«(J), set Ci= 1 and Cj=O for all
other j E!!fl. Then clearly Ii is uniquely determined to be zero at all indices
not belonging to a tretrahedron T with a vertex at (J. In addition, the coef
ficient of Ii is uniquely determined to be zero at all indices belonging to
balls of the form !J( V), where V =1= (J is a vertex of Y.

Now we show that Ii can be extended to each of the sets PJ(E), where E
is an edge. We need only consider edges E such that (J is one of the
endpoints of E. We can apply the results of Section 6 for oranges. First we
show how to extend Ii to the complex of indices C in PJ(E) at a distance
of 4r + 1 from (J. We start with the index of the point on E, and then
proceed to the point lying in C and on the qth ring around E for
q = 1, 2, ..., 2r. If q ~ r, these indices are uniquely determined by the r con
tinuity conditions (to be a polynomial of degree r). Suppose q> r. There
are nq points on this ring, and the associated coefficients must satisfy a
total of nr smoothness conditions. This means that there are always some
free coefficients, and the function Ii can be extended. This process can be
carried out for each 1~ q ~ 2r, and Ii has been extended to C. This process
can then be repeated for the complex at distance 4r + 2 from (J, etc. until
all coefficients corresponding to indices of points in !!fl(E) have been deter
mined. (Note, that some of the complexes farthest from (J will intersect
!J( W), where W is the vertex at the other end of E. In this case a number
of rings may already be determined to be zero).

Next we have to show that Ii can be further extended to the sets !J(F)
where F is a face of a tetrahedron. We are only interested in faces F which
have (J as a vertex as we can take Ii to be zero on all other faces. Let F be
such a face. Now each of the smoothness conditions across F involves a
pyramid of points. In particular, a typical smoothness condition of order p
will involve the index i of a point at distance p from F, and the index of
a similar point located symmetrically at a distance p from F on the other
side of F. One of these points is always free to choose, and it follows that
Ii can be extended to !J(F).

Finally, it is trivial that Ii can be extended to the sets PJ( T), where T is
a tetrahedron as points in these sets are not involved in any smoothness
conditions, and hence we can take Ii to be zero there.



LOCAL BASES FOR SPLINE SPACES 261

Case 2. (G is an edge). For given i E ft(G), set Ci = 1 and cj = 0 for all
other j E ft. Then clearly Ii is uniquely determined on the set .~(G).

Moreover, it is uniquely determined to be identically zero on all sets except
for those of the form !J4(F), where F is a face sharing the edge G. But Ii can
be extended to such a face by the same argument as in Case 1.

Case 3. (G is a face or a tetrahedron). This case is triviaL I
In the bivariate case, it is known (see [11,12J and also [9J) that

minimally supported bases exist not only for all d~ 41' + 1, but also for all
d~ 31' + 2. It is to be expected that for the general case considered here,
minimally supported bases exist not only for all d~ r2 k + 1, but also for ail
d~r(2k_l}+k.

8. THE DIMENSION PROBLEM

Theorem 24 gives a formula for the dimension of S:(ff) in terms of the
number of indices in the minimal determining sets D((J) for 9B( G) in (33)
associated with vertices, edges, triangles, and tetrahedra. This localizes the
dimension problem. Unfortunately, the analysis of minimal determining
sets for the sets 9B( G) corresponding to vertices is an extremely difficult
problem. In this case, the smoothness conditions (32) for all i E 9B(G) are
identical to the set of equations governing the smoothness of a function
S E S;2k-l(star(G)) and

(80;

Thus, constructing a minimal determining set for ~(O') is equivalent to
dealing with spline spaces defined on a vertex star, i.e., the set of
k-simplices surrounding a single vertex. The following example shows
that we cannot expect to get formulae even for trivariate vertex stars
without first completely understanding the bivariate dimension problem for
arbitrary degrees and partitions.

EXAMPLE 25. Consider any two-dimensional triangulation L1 with more
than one interior vertex. Lift it to three dimensions by adding a point
above the triangulation and connecting that point to each of the vertices of
the two-dimensional triangulation. This results in a tetrahedral partition Y
such that each tetrahedron has one face in the plane we started with. Now
consider a spline on the three-dimensional triangulation ff, Because all but
one of the points lie in a plane, the smoothness conditions decouple into
d + 1 sets, each of which describes a bivariate spline on the original two
dimensional triangulation. The polynomial degrees of these splines are
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TABLE I

S ~ on the Trivariate Clough-Tocher Split

Simplex type Dimension # Occurences 136'(0")1 1f2l(0")1 Total

Boundary vertex 0 4 65 43 172
Interior vertex 0 1 69 38 38
Boundary edge 1 6 13 10 60
Interior edge 1 4 15 8 32
Boundary face 2 4 7 7 28

Interior face 2 6 13 7 42

Tetrahedron 3 4 4 4 16

Total 589 = dim S~ 388 = dim S~

0, 1, ..., d. Thus if we can describe a minimal determining set for this three
dimensional spline space, then we would automatically have a minimal
determining set for each of the spaces of bivariate splines S;(LI), i = 1, ..., d.
But, in general, dimension formulae have only been obtained for 1~ i~ r
and for i ~ 3r + 2. Moreover, it has been shown that the dimension of
9';JLI) may depend not only on the topology of the triangulation LI, but
also on the exact geometry (cf. [10]).

For a given tetrahedral partition :Y, it may be possible to analyze the
sets 86'(0") associated with vertices 0" directly. We now give two examples
where this has been done using a computer algebra system.

EXAMPLE 26. Let Q be a tetrahedron, and let :Y be the triangulation
which results when we take the trivariate Clough-Tocher split of Q about
its centroid into four subtetrahedra. In this case the dimensions of 9'g(:Y)
and 9'~(:Y) are 589 and 388, respectively. Table I shows the number of

TABLE II

Si7 on the Trivariate Clough-Tocher Split

Simplex type Dimension # Occurences 136'(0")1 1f2l(0")1 Total

Boundary vertex 0 4 369 220 880
Interior vertex 0 1 425 199 199
Boundary edge 1 6 70 51 306
Interior edge 1 4 90 44 176
Boundary face 2 4 46 46 184
Interior face 2 6 86 46 276
Tetrahedron 3 4 56 56 224
Total 3605 = dim S~7 2245 = dim Si7



LOCAL BASES FOR SPLINE SPACES 163

indices in the various subsets .'J6( (J), and the numbers in the corresponding
minimal determining sets 'p((J). Similarly, the dimensions of 9'~7(:3T) and
9';7(:3T) are 3605 and 2245, respectively; see Table II.
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